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Finite hedging in field theory models of interest rates
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We use path integrals to calculate hedge parameters and efficacy of hedging in a quantum field theory
generalization of the Heath, Jarrow, and Morton@Robert Jarrow, David Heath, and Andrew Morton, Econo-
metrica 60, 77 ~1992!# term structure model, which parsimoniously describes the evolution of imperfectly
correlated forward rates. We calculate, within the model specification, the effectiveness of hedging over finite
periods of time, and obtain the limiting case of instantaneous hedging. We use empirical estimates for the
parameters of the model to show that a low-dimensional hedge portfolio is quite effective.
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I. INTRODUCTION

The first interest rate models were spot rate models
had only one factor, which implied that the prices of
bonds1 were perfectly correlated. This was observed not
be the case in practice, and led Heath and co-workers@1# to
develop their famous model@henceforth called the HJM
~Heath, Jarrow, and Morton! model#. The most important
result of HJM is that, once the discounting factor is fixe
there exists a unique martingale measure for the forw
rates. In the HJM model, the forward rate curve can be
fluenced by more than one factor, and this enabled b
prices to have an imperfect correlation.

However, for aK-factor HJM model, this still meant tha
the movements in the price ofK bonds would determine th
movements in the prices of all other bonds. This would
able one to hedge any instrument withK bonds within the
framework of this model, which again does not seem to
the case in practice. In fact, if taken to be exact, a two-fac
HJM model implies that one can hedge a 30-yr treasury b
with three-month and six-month bills—something that do
look not reasonable. Hence, there has been much intere
developing models which do not have this problem. O
possibility is to use an infinite-factor HJM model as point
out by Cohen and Jarrow@2#, but it is well known that esti-
mating the parameters of even a two- or three-factor H
model from market data is very difficult.

These observations led Kennedy@3#, Santa-Clara and Sor
nette @4#, and Goldstein@5# to come up with random field
models which allowed imperfect correlations across all
bonds. Baaquie@6,7# proceeded with this development b
putting all these models into the framework of quantum fi
theory@8# that allows for the use of a large body of theore
ical and computational methods developed in physics to
applied to this problem. The estimation of parameters
different field theory models has been discussed in Baa
and Srikant@9# and is seen to be more effective than t
estimation of parameters in the HJM model.

*Electronic address: phybeb@nus.edu.sg
†Electronic address: srikant@srikant.org
1In this paper, we only use zero-coupon bonds, hence all re

ences to bonds are to zero-coupon bonds.
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II. A SUMMARY OF THE FIELD THEORY MODEL

Let f (t,x) be the forward rates, that is, the interest at tim
t for an instantaneous loan taken at some timex.t in the
future.

We briefly review Baaquie’s field theory model of fo
ward rates presented in Refs.@6,7#. Baaquie proposed tha
the evolution of the forward rates, instead of being driven
white noise processes as is the case for the HJM mode
replaced by considering the forward rates to be a tw
dimensional quantum field.

In the K-factor HJM model, the evolution of the forwar
rates is fixed by

] f ~ t,x!

]t
5a~ t,x!1(

i 51

K

s i~ t,x!Wi~ t !, ~1!

where Wi(t) are Gaussian white noises given b
E@Wi(t)Wj (t8)#5d i 2 jd(t2t8).

The main extension that one makes in going over to
quantum field theory is to make the HJM white noiseW
depend on future timex as well as ont.

Baaquie@6# proposed that the evolution equation for th
forward rates to be given by

] f ~ t,x!

]t
5a~ t,x!1s~ t,x!A~ t,x!. ~2!

Both f (t,x) andA(t,x) are two-dimensional quantum fields2

and that the fieldA has the free-~Gaussian! free-field action
functional @6#

S@A#52
1

2 Et0

`

dtE
t

t1TFR
dxFA21

1

m2 S ]A

]x D 2G , ~3!

r-

2While we can put in many fieldsAi , as in theK-factor HJM
model, it was shown by Baaquie and Srikant@9# that the extra
generality brought into the process due to the extra argumex
makes one field sufficient for explaining most of the important fe
tures of the market data.
©2004 The American Physical Society30-1
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B. E. BAAQUIE AND M. SRIKANT PHYSICAL REVIEW E 69, 036130 ~2004!
with Neumann boundary conditions imposed atx5t and x
5t1TFR. This action has the partition function, obtained
performing the functional integration over the quantum fie
A(t,x), given by

Z@ j #5EFexpH E
t0

`

dtE
t

t1TFR
A~ t,x! j ~ t,x!J G

[E DA expH E
t0

`

dtE
t

t1TFR
A~ t,x! j ~ t,x!J eS@A#

5expH 1

2 Et0

`

dtE
t

t1TFR
dx dx8 j ~ t,x!

3D~x2t,x82t ! j ~ t,x8!J ~4!

with

D~u,u8;TFR!

5m
coshm~TFR2uu2u8u!1coshm„TFR2~u1u8!…

2 sinhmTFR

5D~u8,u;TFR! ~symmetric function ofu,u8!, ~5!

where u5x2t and u85x82t. We can calculate expecta
tions and correlations using this partition function. Note th
due to the Neumann boundary conditions, the propagatoD,
in fact, depends only on the differencex2t.

When m→0, this model should go over to the HJM
model, which has been discussed in Refs.@6,9#.

The field theory approach preserves the closed form s
tions for hedge parameters and futures contracts. Note
~original! finite-factor HJM model cannot accommodate
empirically determined propagator, since it is automatica
fixed once the HJM volatility functions are specified.

A detailed empirical study of the field theory model—a
the empirical estimation of parameters of the model—w
obtained from the forward rate curve by Baaquie and Srik
@9#. The functions for the Gaussian model has been es
mated from market data, and is shown in Fig. 2 in Ref.@9#.
The results for the empirical~actual! propagator are found
from the data and graphed in Figs. 3 and 4 of Ref.@9#; the
implied propagator for the empirically fitted value ofm
50.06 yr21 is shown in Fig. 6 in Ref.@9#.

III. HEDGING

All forms of financial instruments are subject to risks d
to the unpredictable behavior of the financial markets. Th
are many ways of defining risk@12#. Hedging is a genera
term for the procedure ofreducing, and if possible com-
pletely eliminating, the risks to the value of a financ
instrument—due to its random fluctuations—by including
in a portfolio together with other related instruments.

For bonds, the main risks are changes in interest rates
the risk of default. In this paper, we are only dealing w
default-free bonds so that the only source of risk is
change in interest rates.
03613
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The objective in this paper is to investigate how portfoli
of bonds behave in field theory models of the interest ra
For the objectives of this paper, we define risk of an inst
ment to be the standard deviation, or variance, of its fi
value. This definition of risk is valid for both finite and in
stantaneous hedgings. Hence, when we hedge a certai
strument, we try to create a portfolio of the hedged and he
ing instruments which minimize the overall variance of t
portfolio. A perfectly hedged portfolio in this formulation i
the one with zero variance.

In the case of aK-factor HJM model, perfect hedging
~i.e., a zero variance portfolio! is achievable once any
K-independent hedging instrument is used. However, the
ficulties introduced by the infinite number of factors in th
field theory models have resulted in their being very lit
literature on this important subject, a notable exception be
the measure valued trading strategy developed by Bjo¨rk, Ka-
banov, and Runggaldier@13#.

We will be primarily concerned with hedging~the fluctua-
tions of! zero-coupon treasury bonds, and we will for
hedged portfolios that will include either other bonds w
different maturities or futures contracts on bonds. The pr
of a zero-coupon bond maturing at timeT at some timet
,T is given by

P~ t,T!5expH 2E
t

T

dx f~ t,x!J . ~6!

A futures contract onP(t,T) matures at some timetF
,T, and its value at some timet,tF is the futures price
F(t,tF ,T) given by @6#

F~ t,tF ,T!5E~ t,tF!@P~ t,T!# ~7!

5F~ t,tF ,T!exp$VF~ t,tF ,T!% . ~8!

The forward price is given by

F~ t,tF ,T!5
P~ t,T!

P~ t,tF!
~9!

5expH 2E
tF2t

T2t

du f ~ t,u!J ~10!

and thedeterministicquantityVF(t,tF ,T) is given by@6#

VF~ t0 ,tF ,T!52(
i 51

N E
t0

tF
dtE

0

tF2t

du s i~ t,u!

3E
tF2t

T2t

du8 s i~ t,u8!. ~11!

A typical hedged portfolio that is formed out of bond
with varying maturitiesTi is given by

P~ t !5P~ t,T!1(
i 51

N

D i P~ t,Ti !, ~12!
0-2
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FINITE HEDGING IN FIELD THEORY MODELS OF . . . PHYSICAL REVIEW E 69, 036130 ~2004!
whereas a hedged portfolio using futures contracts has
form

P~ t !5P~ t,T!1(
i 51

N

D iF~ t,tF ,Ti !. ~13!

In this paper the weightsD i of the hedged portfolio will
be determined from the field theory model for the forwa
rates.

Instantaneous hedging refers to a process where the
folio P is continuously rebalanced. In Ref.@15# we carried
out a detailed analysis of the instantaneous hedging o
bond based on the field theory model, and to do so
requires only the propagator and the evolution equations
the forward rates. In constrast, we will see that for the cas
finite hegding the detailed structure of the path integral
comes important for the derivations.

In practice, continuous hedging is not carried out due
transaction costs. We hence consider finite time hedg
since it is important in practice. Hedging over a finite tim
horizont* means creating a portfolio att, namely,P(t), and
then letting this portfolio evolve over the time interval@ t,t* #
without any further rebalancing. We will take the limit o
infinitesimal time and recover the results of instantane
hedging from the finite case.

Finite time hedging provides a measure on how freque
the portfolio needs to be rebalanced, and hence provid
way of optimizing between gains obtained through hedg
against expenses incurred due to transaction costs.

IV. FINITE TIME HEDGING

We only consider the hedging of bonds with other bon
as the calculations for minimizing variance can be done
actly. We will not do hedging of bonds with futures—eve
though this can also be solved exactly by minimizing t
variance—as it does not add much extra insight for fin
time. To see this, consider hedging with a futures contrac
a zero-coupon bond of durationT that matures at the same a
the hedging horizon. This gives exactly the same resul
that obtained by hedging with a bond of the same maturityT.
Therefore, we gain nothing by carrying out that calculatio

We fix some notation. Let us denote the initial time byt0 ,
the hedging horizon byt* , and the maturities of the bond
used for hedging byTi . We would like to create a portfolio
today to hedge a treasury bond, sayP(t0 ,T).

We consider the hedging of one bond maturing atT with
N other bonds maturing atTi , 1< i<N. If one of theTi
5T, then the solution is trivial since it is the same bond. T
hedging is then just to short~sell! the same bond giving us
zero portfolio with obviously zero variance. Since this so
tion is uninteresting, we assume thatTiÞT ; i.

Recall from Eq.~12! that a hedged portfolio is given by

P~ t0!5P~ t0 ,T!1(
i 51

N

D i P~ t0 ,Ti !. ~14!

Note that the portfolioP(t), for t.t0 , is not a log nor-
mal ~Guassian! random variable; however, we continue
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consider its variance to be a suitable measure of the fluc
tions in its value. Hence, the weights of the bondsP(t0 ,Ti)
with maturitiesTi , namely,D i , are chosen so that the var
ance of the portfolioP(t* ) ~at future timet* ) is a minimum.
We hence need to compute the variance

var@P~ t* !#[E@P2~ t* !#2$E@P~ t* !#%2

5E@P2~ t* ,T!#12(
i 51

N

D iE@P~ t* ,T!P~ t* ,Ti !#

~15!

1 (
i , j 51

N

D iD jE@P~ t* ,Ti !P~ t* ,Tj !#

2$E@P~ t* !#%2. ~16!

The coefficientsD i are fixed by mininimizing var@P(t* )#.
To be able to optimally hedge a bondP(t0 ,T) with other

bonds~in the sense of having a minimal resulting varianc!
we need to evaluate the covariance between the value
bonds of different maturities at timet5t* . Since the initial
conditions are given att5t0 , we make the following simpli-
fications. Making use of Eq.~9!, we have

P~ t* ,Ti ![F~ t0 ,t* ,T!e2Gi, ~17!

Gi5E
t
*

Ti
dx@ f ~ t* ,x!2 f ~ t0 ,x!#. ~18!

In other words,

Gi52 lnS P~ t* ,T!

F~ t0 ,t* ,Ti !
D52 lnS P~ t* ,Ti !P~ t0 ,t* !

P~ t0 ,Ti !
D .

~19!

Note that the forward rateF(t0 ,t* ,Ti) is an initial condition
that is fixed by market data att5t0 .

A typical correlator of bonds can be written as

E@P~ t* ,Ti !#5F~ t0 ,t* ,Ti !E@e2Gi#, ~20!

where

E@e2Gi#

5E
2`

1`

dGi e2GiEFdH E
t
*

Ti
dx@ f ~ t* ,x!2 f ~ t0 ,x!#2Gi J G

5E
2`

1` dp

2p E dGi e2GiEFexpipH E
t
*

Ti
dx@ f ~ t* ,x!

2 f ~ t0 ,x!#2Gi J G . ~21!

In general, to calculate the covariance between bond
varying maturities, we first find the joint probability densi
function forN bonds at the hedging horizon. We calculate t
joint distribution of the quantities which represent the log
rithms of the ratios of the final value of the bonds to t
0-3
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B. E. BAAQUIE AND M. SRIKANT PHYSICAL REVIEW E 69, 036130 ~2004!
value at the initial time. The following calculation procee
efficiently because of the use of path integral techniqu
which are very useful for such problems.

Consider

EF)
j 51

N

dH E
t
*

Tj
dx@ f ~ t* ,x!2 f ~ t0 ,x!#2Gj J G

5)
j 51

N E dpj

2p E DA eS@A#

3expH i (
j 51

N

pj S E
t0

t
* dtE

t
*

Tj
dx a~ t,x!

1E
t0

t
* dtE

t
*

Tj
dx s~ t,x!A~ t,x!2Gj D J , ~22!

which, on applying Eq.~4!, becomes

)
j 51

N E dpj

2p
expH 2

1

2 (
j 51

N

(
k51

N

pj pk

3E
0

t
* dtE

t
*

Tj
dxE

t
*

Th
dx8s~ t,x!D~x2t,x82t !s~ t,x8!

1 i (
j 51

N

pj S E
0

t
* dtE

t
*

Tj
dx a~ t,x!2Gj D J . ~23!

Performing the Gaussian integrations, we obtain the jo
probability distribution given by

~2p!2N/2~detB!21/2expH 2
1

2 (
j 51

N

(
k51

N

~Gj2mj !

3Bjk
21~Gk2mk!J , ~24!

whereB is the matrix whose elementsBi j are given by

Bi j 5E
t0

t
* dtE

t
*

Ti
dxE

t
*

Tj
dx8 s~ t,x!D~x2t,x82t !s~ t,x8!

~25!

andmi is given by

mi5E
t0

t
* dtE

t
*

Ti
dx a~ t,x! . ~26!

Hence, the quantitiesGi follow a multivariate Gaussian dis
tribution with covariance matrixBi j and meanmi . Define

E DG[~2p!2N/2~detB!21/2)
j 51

N E
2`

1`

dGj , ~27!

S@G#[2
1

2 (
j 51

N

(
k51

N

~Gj2mj !Bjk
21~Gk2mk!. ~28!
03613
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Having obtained the joint distribution ofGi , we can find
the covariance of the final bond prices by tabulating the
pectations of each of the bonds and the expectation of t
products. The final bond price in terms ofGi is given by
P(t* ,Ti)5F(t0 ,t* ,Ti)e

2Gi. Hence, the expectation of thi
quantity is given by

E@P~ t* ,Ti !#5F~ t0 ,t* ,Ti !E DG e2GieS@G#5F~ t0 ,t* ,Ti !,

~29!

as expected, since the expectation of the future bond pric
the future’s price.

The expectation of the products of the prices of two bon
is given by

E@P~ t* ,Ti !P~ t* ,Tj !#5F~ t0 ,t* ,Ti !F~ t0 ,t* ,Tj !

3E DG e2Gi2GjeS@G#. ~30!

On evaluation, this gives the result

E@P~ t* ,Ti !P~ t* ,Tj !#

5F~ t0 ,t* ,Ti !F~ t0 ,t* ,Tj !expH E
t0

t
* dtE

t
*

Ti
dx

3E
t
*

Tj
dx8s~ t,x!D~x2t,x82t !s~ t,x8!J .

~31!

The covariance between the pricesP(t* ,Ti) and
P(t* ,Tj ) is given by

Mi j 5E@P~ t* ,Ti !P~ t* ,Tj !#2E@P~ t* ,Ti !#E@P~ t* ,Tj !#,

~32!

and hence

Mi j 5F~ t0 ,t* ,Ti !F~ t0 ,t* ,Tj !

3H expS E
0

t
* dtE

t
*

Ti
dxE

t
*

Tj
dx8s~ t,x!

3D~x2t,x82t !s~ t,x8! D 21J , ~33!

and the covariance between the hedged bond of maturiT
and the hedging bonds of maturityTi is given by

Li5F~ t0 ,t* ,T!F~ t0 ,t* ,Ti !

3H expS E
t0

t
* dtE

t
*

T

dxE
t
*

Ti
dx8s~ t,x!

3D~x2t,x82t !s~ t,x8! D 21J . ~34!
0-4
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Minimization of the residual variance of the hedged po
folio is straightforward, and the hedge ratios are found to
given by

D i52(
j 51

N

L jM ji
21. ~35!

We hence have the hedged portfolio given by

P~ t0!5P~ t0 ,T!1(
i 51

N

D i P~ t0 ,Ti ! ~36!

with the portfolio’s minimizedresidual variancebeing given
by

var@P~ t* !#5var@P~ t* ,T!#2LTM 21L. ~37!

The residual variance enables the effectiveness of
hedged portfolio to be evaluated. In the following sectio
residual variance is used for studying the hedged portfo
that include bonds of different maturities.

One important difference between instantaneous hed
and finite time hedging is that in the latter case the re
depends on the value of the drift velocitya. For finite time
hedging, it is natural thata should appear. The reason is th
if one is not hedging continuously, then the portfolio is e
posed to market risks, and therefore risk premiums define
terms ofa appear in the formulas for finite time hedging.

In the calculation above we used the risk-neutral drifta,
obtained by using the money market as the~discounting!
numeraire. However, the market does not follow the ri
neutral measure and it would be better to use a value foa
estimated from the market for any practical use of t
method. For the case of instantaneous hedging, the differ
between the risk-neutral and market drift is irrelevant, sin
in the very short term only the stochastic term dominat
making the drift term itself inconsequential. This, of cours
is not the case for the finite time case where the drift
comes important~it is not difficult to see that the importanc
of the drift grows with the time horizon!.

V. SEMIEMPIRICAL RESULTS FOR FINITE
TIME HEDGING

We discuss the empirical results for hedging of a bo
with other bonds for both the best fit for the constant rigid
field theory model as well as for the fully empirical prop
gator. Reduction of residual variance to zero is not feasibl
practice; the best one can do is to decide the level of risk
is prepared to live with, and then include as many hedg
instruments as is required to achieve this level of risk.

We take the current forward rate curve to be flat and eq
to 5% throughout. The initial forward rate curve does n
affect any of the qualitative results. The results can also
easily extended to other bonds.

The calculation ofL andM were carried out using simpl
trapezoidal integration as the data is not exceptionally ac
rate in the first place. Volatilitys was assumed to be pure
a function ofu5x2t so that all the integrals overx were
03613
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replaced by integrals overu. The bond to be hedged wa
chosen to be the 5-yr-zero-coupon bond and the time hor
t* was chosen to be one year.

Note that the errors involved largely cancel themselv
out, and hence the residual variances obtained are still q
accurate. The parabolic nature of the residual variance
shown in Fig. 1 is becausem is constant; this graph appea
to our economic intuition which suggests that the correlat
between forward rates decreases monotonically as the
tance between them increases.

A more complicated dependence onm and maturity would
produce residual variances that do not deviate monotonic
as the maturities of the underlying bonds and the hedge p
folio increase.

The residual variance and hedge ratio of the hedged p
folio for the hedging a bond using another bond—using
constant rigidity field theory model—is shown in Figs. 1 a
2. The residual variance of the hedged portfolio using t
bonds for hedging is shown in Fig. 3.

The results for the hedging of one bond using the emp

FIG. 1. Residual variance when a 5-yr bond is hedged with
other bond, with the best fit of the constant rigidity field theo
model. Time horizon for hedging of one year. Residual varian
5var@P(1 yr,5 yr)#2L1

2/M11.

FIG. 2. Hedge ratio when a 5-yr bond is hedged with anot
bond with the best fit of the constant rigidity field theory mod
Time horizon of hedging of one year. Hedge ratioD15

2L1
2/M11.
0-5
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B. E. BAAQUIE AND M. SRIKANT PHYSICAL REVIEW E 69, 036130 ~2004!
cal propagator for the hedged portfolio, namely, its resid
variance and hedge ratio gives results almost identical to
one obtained using the field theory propagator with the b
fit for the rigidity parameterm50.06 yr21. As is to be ex-
pected, the empirical rather than the field theory propag
gives a better hedged portfolio.

Note the residual variance when two bonds are used
form the hedged portfolio has instabilities when the matu
of the two bonds being used for hedging have nearby m
rities, and is an important result that also emerges for
case of instantaneous hedging@15#. The field theory model
shows that if one was to form the Greeks for this hedg
portfolio, the instabilities that have surfaced in the fie
theory model would lead to large coefficients, and could
of some significance in choosing the optimum maturity
the bonds being used for hedging.

One interesting result of finite time hedging is that t
actual residual variance of the hedged portfolio when he
ing over a finite time horizon is less than what one naiv
extrapolates the infinitesimal hedging result. This seem
be due to the fact that the domain of the forward rates

FIG. 3. Residual variance when a 5-yr bond is hedged with
other bonds with the best fit of the constant rigidity field theo
model. Time horizon of hedging of one year.
03613
l
e

st

or

to
y
u-
e

d

e
r

-
y
to
at

contribute to the variance of the bonds reduces as the
horizon increases. This is very clear if the maturity of t
bond is close to the hedging horizon, since the volatility
bonds reduces quickly as the time to maturity approach
Apart from this reduction, the results look very similar to th
infinitesimal case. This is probably due to the fact that
volatility is quite small so the nonlinear effects in the cov
riance matrixMi j given in Eq.~33! are not apparent.

If very long time horizons~ten years or more! and long
term bonds are considered, the results will probably be q
different.

VI. INSTANTANEOUS HEDGING

In instantaneous hedging, we consider a hedging portf
which is rebalanced continuously in time. Hence, we
only concerned with the instantaneous variance of the p
folio. To find the weights of the hedged portfolio, we min
mize the variance ofdP(t0)/dt. To obtain the results for
instantaneous hedging, note that fort* 5t01e we have

varFdP~ t0!

dt G.
1

e2 var@P~ t01e!#, ~38!

since the value ofP(t0) is deterministic. BothMi j and Li
computed for finite time hedging yield—after appropria
scaling bye—a finite limit on takinge→0.

We summarize in Table I the results for instantaneo
hedging both for a hedged portfolio composed out of ze
coupon bonds, and out of futures contracts. We use the
tation P(t0 ,Ti)[Pi andF(t0 ,tF ,Ti)[Fi . The result for in-
stantaneous hedging for a portfolio composed out of bo
with varying maturities follows directly from taking the limi
of the finite hedging case.

A detailed analysis of instantaneous hedging using
field theory model for the forward rates is given in Ref.@15#.

o

d for
TABLE I. Residual variance and hedging weights for hedged portfolios of a zero coupon bon
instantaneous hedging using other bonds and future contracts.

Portfolio II

Residual variance of portfolio

V5VarFdP~ t0!

dt G WeightsD i

P
V05P2E

0

T2t0
duE

0

T2t0
du8s~u!s~u8!D~u,u8;TFR!

0

P1(
i51

N

DiPi

V5V02LTM 21L

Li5PPiE
0

T2t0
duE

0

Ti2t0
du8s~u!s~u8!D~u,u8;TFR!

Mij5PiPjE
0

Ti2t0
duE

0

Tj2t0
du8s~u!s~u8!D~u,u8;TFR!

2(
j51

N

LjMji
21

P1(
i51

N

DiFi

V5V02LTM 21L

Li5PFiE
tF2t0

Ti2t0
duE

0

T2t0
du8s~u!D~u,u8;TFR!s~u8!

Mi j 5FiFjE
tF2t0

Ti2t0
duE

tF2t0

Tj 2t0
du8s~u!D~u,u8;TFR!s~u8!

2(
j 51

N

L jM ji
21
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The most important result is that one achieves a large re
tion in the residual variance by shortening two futures c
tracts that mature before and after the maturity of the b
being hedged. If one includes three or more futures contra
there is relatively negligible gains in the residual varianc

VII. CONCLUSION

We have shown that the field theory model offers te
niques to calculate hedge parameters for fixed income
rivatives and provides a framework to answer questions c
cerning the number and maturity of bonds to include in
hedge portfolio. We have also seen how the field the
model can be used to estimate hedge parameters for bot
finite time as well for the instantaneous case. We have u
et

.

-

E

03613
c-
-
d
ts,

-
e-
n-
a
y
the
ed

the field theory model calibrated to market data to show t
a low-dimensional basis provides a reasonably good appr
mation within the framework of this model.

The results of this analysis show that field theory mod
effectively address the theoretical dilemmas of finite-fac
term structure models, and offer a practical alternative
finite-factor models.
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